Evidence against an increase in capillary permeability in subjects exposed to high altitude.

نویسندگان

  • G R Kleger
  • P Bärtsch
  • P Vock
  • B Heilig
  • L J Roberts
  • P E Ballmer
چکیده

A potential pathogenetic cofactor for the development of acute mountain sickness and high-altitude pulmonary edema is an increase in capillary permeability, which could occur as a result of an inflammatory reaction and/or free radical-mediated injury to the lung. We measured the systemic albumin escape by intravenously injecting 5 muCi of 125I-labeled albumin and the plasma concentrations of cytokines, F2-isoprostanes (products of lipid peroxidation), and acute-phase proteins in 24 subjects exposed to 4,559 m. Ten subjects developed acute mountain sickness, and four subjects developed high-altitude pulmonary edema. The transcapillary escape rate of albumin was 6.9 +/- 2.0%/h (SD) at low (550 m) and 6.3 +/- 1.9%/h at high (4,559 m) altitude (P = 0.23; n = 24). The subjects with high-altitude pulmonary edema had a modest but insignificant increase in the transcapillary escape rate of albumin (4.6 +/- 1.9%/h at low vs. 5.7 +/- 1.9%/h at high altitude; P = 0.42; n = 4). Plasma concentrations of fibrinogen, alpha 1-acid glycoprotein, C-reactive protein, and interleukin-6 were unchanged in the early phases and significantly increased by the end of the observation period in the subjects with high-altitude pulmonary edema, whereas tumor necrosis factor-alpha and F2-isoprostanes did not change at all. This suggests that the inflammatory reaction was rather a consequence than a causative factor of high-altitude pulmonary edema. In summary, these data argue against a dominant role for increased systemic capillary permeability in the development of acute mountain sickness and high-altitude pulmonary edema.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-altitude pulmonary edema is initially caused by an increase in capillary pressure.

BACKGROUND High-altitude pulmonary edema (HAPE) is characterized by severe pulmonary hypertension and bronchoalveolar lavage fluid changes indicative of inflammation. It is not known, however, whether the primary event is an increase in pressure or an increase in permeability of the pulmonary capillaries. METHODS AND RESULTS We studied pulmonary hemodynamics, including capillary pressure dete...

متن کامل

The origin of proteinuria at high altitude.

Urinary protein excretion was measured before and after the intravenous infusion of lysine in 14 normal subjects after 4-6 days' acclimatization at 4846 m. Urinary albumin excretion before lysine was elevated in 11 subjects but alpha 1-microglobulin was detected in only four. After lysine a large increase in albumin excretion occurred in all subjects. Together with the absence of alpha 1-microg...

متن کامل

Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor.

CONTEXT The pathogenesis of high-altitude pulmonary edema (HAPE) is considered an altered permeability of the alveolar-capillary barrier secondary to intense pulmonary vasoconstriction and high capillary pressure, but previous bronchoalveolar lavage (BAL) findings in well-established HAPE are also consistent with inflammatory etiologic characteristics. OBJECTIVES To determine whether inflamma...

متن کامل

Effects of altitude and exercise on pulmonary capillary integrity: evidence for subclinical high-altitude pulmonary edema.

Strenuous exercise may be a significant contributing factor for development of high-altitude pulmonary edema, particularly at low or moderate altitudes. Thus we investigated the effects of heavy cycle ergometer exercise (90% maximal effort) under hypoxic conditions in which the combined effects of a marked increase in pulmonary blood flow and nonuniform hypoxic pulmonary vasoconstriction could ...

متن کامل

Rat brain VEGF expression in alveolar hypoxia: possible role in high-altitude cerebral edema.

The mechanism by which hypoxia causes high-altitude cerebral edema (HACE) is unknown. Tissue hypoxia triggers angiogenesis, initially by expressing vascular endothelial growth factor (VEGF), which has been shown to increase extracerebral capillary permeability. This study investigated brain VEGF expression in 32 rats exposed to progressively severe normobaric hypoxia (9-6% O2) for 0 (control), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 81 5  شماره 

صفحات  -

تاریخ انتشار 1996